Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nutrients ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911494

ABSTRACT

Background: Five of the most abundant human milk oligosaccharides (HMOs) in human milk are 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL). Methods: A randomized, double-blind, controlled parallel feeding trial evaluated growth in healthy term infants fed a control milk-based formula (CF; n = 129), experimental milk-based formula (EF; n = 130) containing five HMOs (5.75 g/L; 2'-FL, 3-FL, LNT, 3'-SL and 6'-SL) or human milk (HM; n = 104). Results: No significant differences (all p ≥ 0.337, protocol evaluable cohort) were observed among the three groups for weight gain per day from 14 to 119 days (D) of age, irrespective of COVID-19 or combined non-COVID-19 and COVID-19 periods. There were no differences (p ≥ 0.05) among the three groups for gains in weight and length from D14 to D119. Compared to the CF group, the EF group had more stools that were soft, frequent and yellow and were similar to the HM group. Serious and non-serious adverse events were not different among groups, but more CF-fed infants were seen by health care professionals for illness from study entry to D56 (p = 0.044) and D84 (p = 0.028) compared to EF-fed infants. Conclusions: The study demonstrated that the EF containing five HMOs supported normal growth, gastrointestinal (GI) tolerance and safe use in healthy term infants.


Subject(s)
COVID-19 , Infant Formula , Dietary Supplements , Humans , Infant , Milk, Human , Oligosaccharides
2.
FEBS Open Bio ; 2021 Jun 17.
Article in English | MEDLINE | ID: covidwho-1306632

ABSTRACT

Children show a distinct presentation of COVID-19, characterized by a lower incidence and mild phenotype, but the reason for this is still unknown. The angiotensin-converting enzyme 2 (ACE2) functions as the primary cell entry receptor for Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is thought to cause distinct clinical features between children and old people. The primary purpose of this study was to determine whether differences exist in the level of expression and distribution of ACE2 between neonatal and adult rat lungs. The lung tissues from rats of various ages were used to investigate the expression patterns of ACE2. Western blot, immunohistochemistry, and immunofluorescence were used to quantify or identify the localization of ACE2 in rat lungs. ACE2 was homogenously expressed in fewer alveolar type II (AT2) cells in the neonatal lung, with no polarization to the alveolar space and additional expression in pulmonary endothelium when compared to adult rat lungs. These findings suggest that the patterns of ACE2 distribution and cellular localization in rat lungs change with age.

SELECTION OF CITATIONS
SEARCH DETAIL